

Automatonymous

Automatonymous is a state machine library for .NET developers. Automatonymous provides a fluent syntax for declaring state machines, including the states, events (both trigger and data events are supported), and state/event activities. While surprising easy to use for simple state machines, Automatonymous has many advanced features that make it usable in a variety of contexts.

Automatonymous is completely open source and licensed under the very permissive Apache 2.0 license, making usable at no cost to anyone for both commercial and non-commercial use.

Automatonymous is hosted on GitHub at: https://github.com/MassTransit/Automatonymous

Contents:

	Installing Automatonymous
	Requirements

	Getting Started with Automatonymous
	Creating Your First State Machine

	Automatonymous Quick Start
	Seriously?

	Tracking State

	Defining Behavior

	Creating Instances

	Creating the State Machine

	Raising Events

Cry For Help

This documentation is stored in the GitHub repository, and as such can be forked, updated, and merged into the
main project via pull request. So if you want to help out with the documentation, please do so!

Indices and tables

	Index

	Module Index

	Search Page

Installing Automatonymous

The easiest way to install Automatonymous is with NuGet. Open the package manager
and add Automatonymous to your project and the proper references will be added for you.

Requirements

Automatonymous requires .NET 4.5 (or later). Due to the extensive use of the TPL and async/await, it is not compatible with .NET versions prior to 4.5.

	How to install
	NuGet

	Raw Binaries
	Then you will need to add references to

	Compiling From Source

	Build Dependencies

	Compiling

How to install

NuGet

The simplest way to install MassTransit into your solution/project is to use
NuGet.:

nuget Install-Package MassTransit

Raw Binaries

If you are a fan of getting the binaries you can get released builds from

http://github.com/masstransit/MassTransit/downloads

Then you will need to add references to

	MassTransit.dll

	MassTransit.<Transport>.dll (Either MSMQ or RabbitMQ)

	MassTransit.<ContainerSupport>.dll (If you are so inclined)

Compiling From Source

Lastly, if you want to hack on MassTransit or just want to have the actual source
code you can clone the source from github.com.

To clone the repository using git try the following:

git clone git://github.com/MassTransit/MassTransit.git

If you want the development branch (where active development happens):

git clone git://github.com/MassTransit/MassTransit.git
git checkout develop

Build Dependencies

To compile MassTransit from source you will need the following developer tools
installed:

	.Net 4.0 sdk

	ruby v 1.8.7

	gems (rake, albacore)

Compiling

To compile the source code, drop to the command line and type:

.\build.bat

If you look in the .\build_output folder you should see the binaries.

Getting Started with Automatonymous

Once you have added Automatonymous to your project (using NuGet or otherwise), you’re ready to create
your first state machine.

Creating Your First State Machine

A state machine is declared with Automatonymous using an internal domain specific language (DSL). To
declare a state machine, add a class to your project that inherits from AutomatonymousStateMachine. For
our example, we’ll use the concept of a vehicle pit stop on the road of life.

public class PitStop :
 AutomatonymousStateMachine<VehicleState>
{
 public PitStop()
 {
 State(() => Running);
 Event(() => Start);

 Initially(
 When(Arrived)
 .TransitionTo(Waiting));
 }

 public Event<Vehicle> Arrived {get; private set;}

 public State Waiting {get; private set;}
}

So far, only a minimum level of functionality has been declared. When a vehicle arrives, the PitStop
is in an initial state. When the Arrived event is raised, the vehicle information is passed to the handler,
which transitions to the Waiting state.

	Automatonymous Quick Start
	Seriously?

	Tracking State

	Defining Behavior

	Creating Instances

	Creating the State Machine

	Raising Events
	Lifters

Automatonymous Quick Start

So you’ve got the chops and want to get started quickly using Automatonymous. Maybe
you are a bad ass and can’t be bothered with reading documentation, or perhaps you
are already familiar with the Magnum StateMachine and want to see what things have
changed. Either way, here it is, your first state machine configured using Automatonymous.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

	class Relationship
{
 public State CurrentState { get; set; }
 public string Name { get; set; }
}

class RelationshipStateMachine :
 AutomatonymousStateMachine<Relationship>
{
 public RelationshipStateMachine()
 {
 Event(() => Hello);
 Event(() => PissOff);
 Event(() => Introduce);

 State(() => Friend);
 State(() => Enemy);

 Initially(
 When(Hello)
 .TransitionTo(Friend),
 When(PissOff)
 .TransitionTo(Enemy),
 When(Introduce)
 .Then(ctx => ctx.Instance.Name = ctx.Data.Name)
 .TransitionTo(Friend)
);
 }

 public State Friend { get; private set; }
 public State Enemy { get; private set; }

 public Event Hello { get; private set; }
 public Event PissOff { get; private set; }
 public Event<Person> Introduce { get; private set; }
}

class Person
{
 public string Name { get; set; }
}

Seriously?

Okay, so two classes are defined above, one that represents the state (Relationship)
and the other that defines the behavior of the state machine (RelationshipStateMachine).
For each state machine that is defined, it is expected that there will be at least one instance.
In Automatonymous, state is separate from behavior, allowing many instances to be managed using
a single state machine.

Note

For some object-oriented purists, this may be causing the hair to raise on the back of your neck.
Chill out, it’s not the end of the world here. If you have a penchant for encapsulating
behavior with data (practices such as domain model, DDD, etc.), recognize that programming language
constructs are the only thing in your way here.

Tracking State

State is managed in Automatonymous using a class, shown above as the Relationship.

Defining Behavior

Behavior is defined using a class that inherits from AutomatonymousStateMachine. The class is generic,
and the state type associated with the behavior must be specified. This allows the state machine configuration
to use the state for a better configuration experience.

Note

It also makes Intellisense work better.

In a state machine, states must be defined along with the events that can be raised. In the constructor,
each state and event must be explicitly defined. As each state or event is defined, the specified property
is initialized with the appropriate object type (either a State or an Event), which is why a lambda method
is used to specify the property.

Creating Instances

Creating the State Machine

Raising Events

Once a state machine and an instance have been created, it is necessary to raise an event on the state
machine instance to invoke some behavior. There are three or four participants involved in raising an event: a
state machine, a state machine instance, and an event. If the event includes data, the data for the event is also
included.

The most explicit way to raise an event is shown below.

var relationship = new Relationship();
var machine = new RelationshipStateMachine();

machine.RaiseEvent(relationship, machine.Hello);

If the event has data, it is passed along with the event as shown.

var person = new Person { Name = "Joe" };

machine.RaiseEvent(relationship, machine.Introduce, person);

Lifters

Lifters allow events to be raised without knowing explicit details about the state machine or the instance type,
making it easier to raise events from objects that do not have prior type knowledge about the state machine or the
instance. Using an approach known as currying (from functional programming), individual arguments of raising an event can
be removed.

For example, using an event lift, the state machine is removed.

var eventLift = machine.CreateEventLift(machine.Hello);

// elsewhere in the code, the lift can be used
eventLift.Raise(relationship);

The instance can also be lifted, making it possible to raise an event without any instance type knowledge.

var instanceLift = machine.CreateInstanceLift(relationship);
var helloEvent = machine.Hello;

// elsewhere in the code, the lift can be used
instanceLift.Raise(helloEvent);

Lifts are commonly used by plumbing code to avoid dynamic methods or delegates, making code
clean and fast.

Automatonymous Quick Start

So you’ve got the chops and want to get started quickly using Automatonymous. Maybe
you are a bad ass and can’t be bothered with reading documentation, or perhaps you
are already familiar with the Magnum StateMachine and want to see what things have
changed. Either way, here it is, your first state machine configured using Automatonymous.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

	class Relationship
{
 public State CurrentState { get; set; }
 public string Name { get; set; }
}

class RelationshipStateMachine :
 AutomatonymousStateMachine<Relationship>
{
 public RelationshipStateMachine()
 {
 Event(() => Hello);
 Event(() => PissOff);
 Event(() => Introduce);

 State(() => Friend);
 State(() => Enemy);

 Initially(
 When(Hello)
 .TransitionTo(Friend),
 When(PissOff)
 .TransitionTo(Enemy),
 When(Introduce)
 .Then(ctx => ctx.Instance.Name = ctx.Data.Name)
 .TransitionTo(Friend)
);
 }

 public State Friend { get; private set; }
 public State Enemy { get; private set; }

 public Event Hello { get; private set; }
 public Event PissOff { get; private set; }
 public Event<Person> Introduce { get; private set; }
}

class Person
{
 public string Name { get; set; }
}

Seriously?

Okay, so two classes are defined above, one that represents the state (Relationship)
and the other that defines the behavior of the state machine (RelationshipStateMachine).
For each state machine that is defined, it is expected that there will be at least one instance.
In Automatonymous, state is separate from behavior, allowing many instances to be managed using
a single state machine.

Note

For some object-oriented purists, this may be causing the hair to raise on the back of your neck.
Chill out, it’s not the end of the world here. If you have a penchant for encapsulating
behavior with data (practices such as domain model, DDD, etc.), recognize that programming language
constructs are the only thing in your way here.

Tracking State

State is managed in Automatonymous using a class, shown above as the Relationship.

Defining Behavior

Behavior is defined using a class that inherits from AutomatonymousStateMachine. The class is generic,
and the state type associated with the behavior must be specified. This allows the state machine configuration
to use the state for a better configuration experience.

Note

It also makes Intellisense work better.

In a state machine, states must be defined along with the events that can be raised. In the constructor,
each state and event must be explicitly defined. As each state or event is defined, the specified property
is initialized with the appropriate object type (either a State or an Event), which is why a lambda method
is used to specify the property.

Creating Instances

Creating the State Machine

Raising Events

Once a state machine and an instance have been created, it is necessary to raise an event on the state
machine instance to invoke some behavior. There are three or four participants involved in raising an event: a
state machine, a state machine instance, and an event. If the event includes data, the data for the event is also
included.

The most explicit way to raise an event is shown below.

var relationship = new Relationship();
var machine = new RelationshipStateMachine();

machine.RaiseEvent(relationship, machine.Hello);

If the event has data, it is passed along with the event as shown.

var person = new Person { Name = "Joe" };

machine.RaiseEvent(relationship, machine.Introduce, person);

Lifters

Lifters allow events to be raised without knowing explicit details about the state machine or the instance type,
making it easier to raise events from objects that do not have prior type knowledge about the state machine or the
instance. Using an approach known as currying (from functional programming), individual arguments of raising an event can
be removed.

For example, using an event lift, the state machine is removed.

var eventLift = machine.CreateEventLift(machine.Hello);

// elsewhere in the code, the lift can be used
eventLift.Raise(relationship);

The instance can also be lifted, making it possible to raise an event without any instance type knowledge.

var instanceLift = machine.CreateInstanceLift(relationship);
var helloEvent = machine.Hello;

// elsewhere in the code, the lift can be used
instanceLift.Raise(helloEvent);

Lifts are commonly used by plumbing code to avoid dynamic methods or delegates, making code
clean and fast.

Index

Interop with MassTransit (Routing RFC)

MassTransit’s serializers do the main work of formatting the data that goes over the wire. Below is the message format that everything is mapped to/from:

string RequestId { get; set; }
string ConversationId { get; set; }
string CorrelationId { get; set; }
string DestinationAddress { get; set; }
DateTime? ExpirationTime { get; set; }
string FaultAddress { get; set; }
IDictionary<string, string> Headers { get; set; }
object Message { get; set; }
string MessageId { get; set; }
IList<string> MessageType { get; set; }
string Network { get; set; }
string ResponseAddress { get; set; }
int RetryCount { get; set; }
string SourceAddress { get; set; }

These are compulsory for a message to be delivered:

	Message

	MessageType

	SourceAddress

MessageType is a list of urns. See MessageUrnSpecs for the format. Informally, it’s like this:

urn:message:NAMESPACE1.NAMESPACE2:TYPE

Common Configuration Options

Trying to get multiple applications to talk to each other is not a simple
problem. The biggest difficulty seems to be just getting everything configured
correctly. With over three years of experience in setting up message based systems
the developers on MassTransit have tried their darndest to make sure that the
MassTransit’s defaults cover the majority of the decisions you will have to make
while minimizing the configuration code you have to deal with. We hope that the options
are clear and make sense why you need to select them. Below are some of the options you
have:

Transport Factory Options

ServiceBusFactory.New(sbc =>
{
 sbc.UseMsmq();
 sbc.UseRabbitMq();

 //if you would like to implement your own.
 sbc.AddTransportFactory<TTransportFactory>();
});

The first decision is what transport are you going to use? RabbitMQ or MSMQ? If you don’t know
which one to choose I suggest reading up on the two and see which one works better for
your environment.

Basic Options

ServiceBusFactory.New(sbc =>
{
 //transport choice

 sbc.ReceiveFrom("address");
 sbc.UseControlBus();
});

The next decision we have to make is what address are we going to listen on? Addresses are in the
form of a URL and will look like msmq://localhost/queue_name or for RabbitMQ
rabbitmq://localhost/queue_name.

Warning

Each instance must have its own address.

The last concern is, do you want to use a control bus or not. Control Bus

ServiceBusFactory.New(sbc =>
{
 //transport choice
 //address

 sbc.UseControlBus();
});

Serializer Options

ServiceBusFactory.New(sbc =>
{
 //transport choice
 //address
 //control bus

 sbc.UseBinarySerializer();
 sbc.UseBsonSerializer();
 sbc.UseJsonSerializer();
 sbc.UseVersionOneXmlSerializer();
 sbc.UseXmlSerializer();

 //if you would like to implement your own.
 sbc.SetDefaultSerializer<TSerializer>();
});

This is mostly optional, because the transports will set their preferred defaults, but if you
need to override the default you can using these methods. With the SetDefaultSerializer you can
provide a custom serializer that you created.

Bus Tuning Options

ServiceBusFactory.New(sbc =>
{
 sbc.SetConcurrentConsumerLimit(2);
 sbc.SetDefaultTransactionTimeout(5.Minutes());

 sbc.AfterConsumingMessage(()=>{});
 sbc.BeforeConsumingMessage(()=>{}):

 sbc.ConfigureEndpoint();
});

These options, aren’t usually needed until you get into production and need to tune the
behavior of the bus.

Turning on Diagnostics

If you want to get a snapshot of how your service bus is configured, you can get
a pretty good picture of it by using the method.

var bus = ServiceBusFactory.New(sbc => { /* usual stuff */ });
var probe = bus.Probe();
//you can now inspect the probe

//for your convience we also have added a few helper methods.
bus.WriteIntrospectionToFile("a_file.txt"); //great to send with support requests :)
bus.WriteIntrospectionToConsole();

You may also want to inspect a running bus instance remotely. For that you just need to enable
remote introspection like so.

ServiceBusFactory.New(sbc =>
{
 //the usual options

 sbc.EnableRemoteInstrospection();
});

You can then use the busdriver to query the status. using:

busdriver status -uri:<address to control bus>

Low Lever Config Api

ServiceBusFactory.New(sbc =>
{
 sbc.AddBusConfigurator
 sbc.AddService<TService>();
});

If you are using these, then we probably need to talk. This usually means that there is a low
level feature we are not supplying to you. Its totally ok to use these, but they tend to
need a lot of parameters and require intimate knowledge of MassTransit.

Using MassTransit with an IoC Container

MassTransit has been built from the beginning with the concept of an IoC container
being involved. Our support for using them is quite solid and mature and is most certainly
recommended. However with everything else you are learning trying to figure out
just how to get the container involved might be overwhelming. Below you will find prototypical
examples of container integration.

StructureMap

public static void main(string[] args)
{
 var container = new Container(cfg =>
 {
 // register each consumer

 //or use StructureMap's excellent scanning capabilities
 });

 var bus = ServiceBusFactory.New(sbc =>
 {
 //other configuration options

 //this will find all of the consumers in the container and
 //register them with the bus.
 sbc.Subscribe(x => x.LoadFrom(container));
 });

 //now we add the bus
 container.Inject(bus);
}

Note

We recommend that most of this type of code be placed in an StructureMap Registry

Windsor

public static void main(string[] args)
{
 var container = new WindsorContainer();

 // register each consumer manually
 container.Register(Component.For<IConsumer>().ImplementedBy<YourConsumer>);

 //or use Windsor's excellent scanning capabilities
 container.Register(AllTypes.FromThisAssembly().BasedOn<IConsumer>());

 var bus = ServiceBusFactory.New(sbc =>
 {
 //other configuration options

 //this will find all of the consumers in the container and
 //register them with the bus.
 sbc.Subscribe(x => x.LoadFrom(container));
 });

 //now we add the bus
 container.Register(Component.For<IServiceBus>().Instance(bus));
}

Note

We recommend that most of this type of code be placed in an IWindsorInstaller

AutoFac

public static void main(string[] args)
{
 var builder = new ContainerBuilder();

 // register each consumer manually
 builder.RegisterType<YourConsumer>().As<IConsumer>();

 //or use Autofac's scanning capabilities -- SomeClass is any class in the correct assembly
 builder.RegisterAssemblyTypes(typeof(SomeClass).Assembly).As<IConsumer>();

 //now we add the bus
 builder.Register(c => ServiceBusFactory.New(sbc =>
 {
 //other configuration options

 //this will find all of the consumers in the container and
 //register them with the bus.
 sbc.Subscribe(x => x.LoadFrom(container));
 })).As<IServiceBus>()
 .SingleInstance();

 var container = builder.Build();
}

Note

We recommend that most of this type of code be placed in an Autofac Module

Ninject

public static void main(string[] args)
{
 var kernel = new StandardKernel();

 // register each consumer manually
 kernel.Bind<YourConsumer>().ToSelf();

 //Dru is currently unaware of any scanning capability

 var bus = ServiceBusFactory.New(sbc =>
 {
 //other configuration options

 //we have to explicitly configure the subscriptions because
 //the Ninject metadata model is not rich enough.
 sbc.Subscribe(subs =>
 {
 subs.Consumer<YourConsumer>(kernel)
 });
 });

 //now we add the bus
 kernel.Bind<IServiceBus>().To(bus);
}

Note

We recommend that most of this type of code be placed in an Ninject Module

Warning

The Ninject container doesn’t currently support the workflow that we can use with
the other containers, and because of that the LoadFrom method that our other
container extensions use is not supported. We filed an issue with the Ninject
team, and the issue was closed with ‘Not going to fix’.
https://github.com/ninject/ninject/issues/35

Unity

Coming soon. Feel free to write it up.

Hey! Where’s my container??

Don’t see your container here? Feel free to submit a pull request. You should easily be able to
add support by following the other containers.

Comman Gotcha’s

Trying to share a queue

Each application needs it own address! If you have a website and a console application they will
each need their own address. For instance the website could listen at msmq://localhost/web and
the console at msmq://localhost/console.

How to do an NServiceBus send only endpoint?

Use the IEndpointResolver to get an Endpoint that you can call .Send(msg) on.

How to setup a competing consumer?

need to doc this. ;)

RabbitMQ and Msmq

Locations in your Application where MT is usually configured

Now that we know how to configure the MassTransit system, the next question is usually
where should I do the configuration?

The short answer is: Configure it when you are configuring your IoC Container.

Configuring MassTransit in a Console Application / Windowws Service

I typically do this inside of the methods that build up my IoC container
and typically I do this in the main method.

public class Program
{
 public void static main(string[] args)
 {
 //configure MT

 //execute program logic
 }
}

Configuring MassTransit in a Website

I still typically do this inside of the methods that build up my IoC
container, but instead of the main method it usually happens in the
global.asax file.

Note

a lot of our samples show using MT with another open source project
Topshelf. This is a .Net Windows Service host. And should not be use
with web sites.

public class Global : HttpApplication
{
 protected void Application_Start()
 {
 //configure MT

 //execute program logic
 }
}

Common Subscription Options

MassTransit has a lot of ways that you can provide subscription options.

Subscription Options During Configuration

ServiceBusFactory.New(sbc =>
{
 sbc.Subscribe(s=>
 {
 s.Handler(msg => {});
 s.Handler((cxt, msg) => {});

 s.Instance(yourObject);

 s.Consumer(()=> new YourConsumer());
 s.Consumer(consumerFactory)
 s.Consumer(consumerType);
 s.Consumer<TConsumer>();

 //for a permanent subscription
 s.Consumer<TConsumer>()
 .Permanent();

 s.Saga(sagaRepository)

 //if using an IoC container
 //this will scan the container and call Consumer(type) on found
 //types
 s.LoadFrom(container);
 });
});

Now that we have a transport, an address, and some basic options figured out the meat of the work
is in front of you. Establishing your subscriptions. As you can see there are a lot of options
so I am going to save most of the explanation for the next page.

Note

Permanent Subscriptions will NOT be automatically unsubscribed at bus shutdown. See keyideas

Subscription Options With IoC Container

ServiceBusFactory.New(sbc =>
{
 sbc.Subscribe(s=>
 {
 //if using an IoC container
 //this will scan the container and call Consumer(type) on found
 //types
 s.LoadFrom(container);
 });
});

Note

Need more notes here

Subscription Options During Post Configuration

var bus = ServiceBusFactory.New(sbc => { /* configure */ });

//options
bus.SubscribeConsumer();
bus.SubscribeHandler();
bus.SubscribeInstance();
bus.SubscribeSaga();

Note

Need more content here. See keyideas

Transport Configuration

Each transport has different configuration options.

	Msmq Configuration Options

	RabbitMQ Configuration Options

Msmq Configuration Options

ServiceBusFactory.New(sbc =>
{
 sbc.UseMsmq();
 sbc.VerifyMsmqConfiguratio();
 sbc.VerifyMsDtcConfiguration():
});

Crap. I just wiped out the msmq and have to rewrite.

UseMsmq() should be obvious. It configures the bus to use the MSMQ transport.

VerifyMsmqConfiguration() will confirm that MSMQ is correctly installed and fix
the install by adding missing components.

VerifyMsDtcConfiguration() will confirm that the DTC is setup correctly.

Note

A post on MSMQ and Ports: http://blogs.msdn.com/b/johnbreakwell/archive/2008/04/29/clear-the-way-msmq-coming-through.aspx

Note

A post on public vs privet queues: http://technet.microsoft.com/en-us/library/cc776346.aspx

Installing MSMQ Step by step (12/21/2011)
#. Get to ‘Computer Management’
#. Expand ‘Services and Applications’
#. Expand ‘Message Queuing’
#. Right click on ‘Private Queues’: New > Private Queue
#. Enter a ‘Queue Name’
#. Choose whether or not you would like it to be ‘Transactional’ or not.

Note

Creating a queue this way will require permission changes. As you will be the only person able to administer the queue! STRONGLY suggested that you at this time give the Administrator role Full Control over the queue.

	Permission

	Role: Consumer

	Role: Sender

	Full Control

	
	

	
	

	Delete

	
	

	
	

	Receive Message

	Y

	
	

	Peek Message

	Y

	
	

	Receive Journal Message

	
	

	
	

	Get Properties

	Y

	Y

	Set Porperties

	
	

	
	

	Get Permissions

	Y

	Y

	Set Permissions

	
	

	
	

	Take Ownership

	
	

	
	

	Send Message

	Y

	Y

	Special Permissions

	
	

	
	

RabbitMQ Configuration Options

This is the recommended approach for configuring MassTransit for use with RabbitMQ.

ServiceBusFactory.New(sbc =>
{
 // this is the recommended routing strategy, and will call 'sbc.UseRabbitMq()' on its own.
 sbc.UseRabbitMqRouting();
 // other options
});

Alternatively you can use raw RabbitMQ routing.

ServiceBusFactory.New(sbc =>
{
 // this is the recommended routing strategy, and will call 'sbc.UseRabbitMq()' on its own.
 sbc.UseRabbitMq();
 // other options
});

Have a look at this table for clarification:

UseRabbitMq tells the MassTransit code to use RabbitMQ as the transport.
This also sets the default serializer to JSON.

UseRabbitMqRouting configures the bus instance to use the default MassTransit
convention based routing for RabbitMq

About the RabbitMQ routing topology in place with MassTransit.

	networks are segregated by vhosts

	we generate an exchange for each queue so that we can do direct sends to the queue. it is bound as a fanout exchange

	for each message published we generate series of exchanges that go from concrete class to each of its subclass / interfaces these are linked together from most specific to least specific. This way if you subscribe to the base interface you get all the messages. or you can be more selective. all exchanges in this situation are bound as fanouts.

	the subscriber declares his own queue and his queue exchange ? he then also declares/binds his exchange to each of the message type exchanges desired

	the publisher discovers all of the exchanges needed for a given message, binds them all up and then pushes the message into the most specific queue letting RabbitMQ do the fanout for him. (One publish, multiple receivers!)

	control queues are exclusive and auto-delete ? they go away when you go away and are not shared.

	we also lose the routing keys. WIN!

You will need to configure RabbitMQ to support SSL also http://www.rabbitmq.com/ssl.html.

	1

	Polymorphic Routing is routing where bus.Subscribe(...) would receive both class A {} and class B : A {} message.

	2

	Interface Routing is routing where bus.Subscribe<C>(...) would receive

How to report bugs

MassTransit can be a tricky beast to debug, with a multi-threaded system,
trying to track down the issue can be a bit painful.

So if you run into a bug, please spend a minute collecting the right information
to help us fix the bug.

The most valuable piece of information you can give us, is always give us a failing
unit test, if you can’t give us that then how to reproduce the bug in a step by
step fashion. Other wise its going to be a lot of back and forth until we can
better understand and get to a failing unit test.

Getting hold of us

Getting hold of the gang behind MassTransit is pretty straight forward, we try
to help as much as time permits and have tried to streamline this process as much
as possible.

But before you grab hold of us, spend a moment composing your thoughts and
formulate your question, there is nothing as pointless as simply telling us
“MassTransit does not work for me” with no further information to give any clue
to why.

And before you even do that, do a couple of searches to see if your question is
already answered, if it has been, you will get your answer much faster that way.

Mailing List

Getting on or off our mailinglist happens through Google Groups.

http://groups.google.com/group/masstransit-discuss/

If you are going to use MassTransit, subscribing to our masstransit-discuss
mailing list is probably a very good idea. This is where most conversation
about MassTransit is going to happen.

Make sure to pick a good subject line, and if the subject of the
thread changes, please change the subject to match, some of us deal
with hundreds of emails per day, after spam-filters, and we need all
the help we can get to pick the interesting ones.

Also, please include the diagnostics output generated by the config
switch sbc.WriteDiagnosticsToFile("a_file.txt"). This will help
jump start a lot of the context for us.

Twitter

The most immediate way to get hold of us, is to shoot a tweet to #mtproj

Our main time zone is Central time in the United States.

If you can explain your problem in a clear sentence, twitter is a good way
to get quick response. If you do need to paste log files, config and so on,
please use a gist. But because its often not clear because usually
there is a great deal of context to a question we may push you to our mailing
list on google groups.

If twitter is all quiet, try the mailing list as well, we do have lives,
families and jobs to deal with also.

Issues / Tickets

Please do not open an issue on github, unless you have spotted an actual
bug in MassTransit. Ask on the mailing list first if you are in doubt.

https://github.com/masstransit/masstransit/issues

The reason for this policy, is to avoid the bugs being drowned in a
pile of sensible suggestions for future enhancements and call for help
from people who forget to check back if they get it and so on.

Prerequisites

MassTransit is a .Net framework for C# and will need a .Net runtime to run on.

To work with MassTransit you will need to be running on a Windows operating
system. The developers of MassTransit regulary test on Windows 7 and
Windows Server 2008RC2. Though it should still work on Windows Server 2003, as
long as .Net 3.5 sp1 is installed.

Note

People are starting to run MassTransit with RabbitMQ on Mono with success.

.Net Framework

Currently MassTransit is tested on .Net 3.5 sp1 and .Net 4.0.

Transport Choices

MassTransit sits on top of a communication layer like MSMQ, or RabbitMQ. So you
will need to have one of those installed. We currently support:

	Loopback

	MSMQ

	RabbitMQ

Loopback

The loopback transport is great for testing.

MSMQ

The default queueing platform for Windows

RabbitMQ

A high volume queueing platform

What is a Control Bus?

The control bus concept allows ‘control’ messages to skip ahead of ‘data’ messages. When you fire
up a ServiceBus instance at msmq://localhost/servicea you will also get a bus instance at
msmq://localhost/servicea_control (similar approaches are taken for RabbitMQ and ActiveMQ
though the pattern may be different). This queue is monitored by your instance of the IServiceBus
on the ‘ControlBus’ property. Control messages are not transactional and are more about information
passing and management issues. They should not be used for business critical communication, they are
usually temporary in nature (if your instance isn’t there it doesn’t get control messages) and are
usually purged on start up.

Inspiration:

http://www.eaipatterns.com/ControlBus.html

What is the Data Bus?

The data bus is the instance of IServiceBus that you will work with day in and day out. It is the
instance that listens at msmq://localhost/servicea that you configured at start up. This is
typically the one you want set to transactional queues and want to be careful about just randomly
purging.

Inbound Message Processing Pipeline

There are a lot of moving parts in MassTransit to receive a chunk of text from a queue, deserialize
the text into a message object, dispatch that message to one or more receivers, and finally
acknowledge the message on the queue. The diagram below shows the path a message takes from the
transport all the way up to the receiver.

[image: ../_images/inboundPipeline.png]

How MassTransit Works

	Key Terminology
	Receiving Messages
	Handlers

	Instances

	Consumers
	Interfaces for Consumers

	All

	Selected

	For<TCorrelationId>

	Sagas

	Messages and Serialization

	Transports and Endpoints
	Transports

	Endpoints

	Address

	When messages are published, how do they get there?
	MSMQ Runtime Services & Multicast

	RabbitMQ

	When messages are sent, how do they get there?

	How to do Request/Response with MassTransit

	Versioning Messages

	Inbound Message Processing Pipeline

	How are subscriptions shared?
	Permanent v.s. Temporary Subscriptions

	Unsubscribe Token

	Transport Specific Notes
	MSMQ Multicast

	MSMQ Runtime Services

	RabbitMQ

	Subscription Service
	Hosting a subscription service

	Subscription Client

	What does MassTransit add on top of MSMQ and RabbitMQ?
	Sagas

	Threaded Consumers

	Exception Management

	Retries & Poision Messages

	Transactions

	Serialization

	Headers

	Consumer Lifecycle

	Routing

	Rx integration

	Unit Testability

	Fluent NHibernate Integration

	Routing & Static Routing

	Hackable

	Diagnostics

	Tracing

	Monitoring

	Distributor

	Timeout Service

	Encryption

	Defining Sagas using the Saga State Machine
	What is a saga?

	Defining a Saga

	Defining a Saga Using the State Machine Syntax

	Combining Events (think Fork/Join)

	Subscribing to the Saga

	Routing of Messages in MassTransit
	RabbitMQ Routing Conventionns

	What is the Data Bus?

	What is a Control Bus?

	Inheritance and Message Class Design

	Companies Using MassTransit
	Company Name

	Federal Home Loan Bank of Topeka

	Serialization Options

	Logging in MassTransit

	Performance Counters
	User Permissions

	Windows Installer

	Standard Services

	Runtime Services
	Subscription Service

	Timeout Service

	Health Service

	Videos

Inheritance and Message Class Design

That said, I would advise you to think about the following things:
#. Interface-based inheritance is OK
#. Class-based inheritance is to be approached with caution
#. Composing messages together ends up pushing us into content-based routing which is something we don’t recommend
#. Message Design is not OO Design (A message is just state, no behavior) There is a greater focus on interop and contract design.
#. As messages are more about contracts, we suggest subscribing to interfaces that way you can easily evolve the implementation of the message.
#. A big base class may cause pain down the road as each change will have a larger ripple. This can be especially bad when you need to support multiple versions.

Key Terminology

When getting started using MassTransit, it is a good idea to have a handle on the terminology
used in messaging. To ensure that you are on the right path when looking at a class or interface,
here are some of the terms used when working with MassTransit.

Receiving Messages

At the application layer, most users of MassTransit are interested in receiving messages.
There are several different receiver types that are supported, providing flexibility it
how you interact with the framework.

Handlers

The easiest (and, by definition, least flexible) type of receiver is the Handler. A handler
is any method (including anonymous and lambda methods) that has a single argument of a message
type and a void return type.

void MyMessageHandler(MyMessage message)
{}

When a message is received, MassTransit will call the method passing the message as the argument.
With a handler, no special controls are available to manage the lifecycle of the receiver. Therefore,
it is up to the application to deal with the fact that the handler may be called simultaneously
from multiple threads if more than one message is being received. If your application is not
thread-safe, it is recommended that the concurrent consumer limit be set to one in the bus
configuration to avoid multithreading issues.

Instances

An Instance receiver is a class instance where the class implements one or more Consumes
interfaces. Each of the Consumes interfaces accepts a generic argument (which must be a
reference type) that declares the type of message the instance wants to consume. Once an
instance is subscribed, as messages of the subscribed types are received, MassTransit will
call the Consume method on the class instance passing the message as the argument.

public class MyClass :
 Consumes<MyMessage>.All,
 Consumes<MyOtherMessage>.All
{
 public void Consume(MyMessage message)
 {}
 public void Consume(MyOtherMessage message)
 {}
}

Consumers

A Consumer is the most useful type of receiver and support a number of features that allow
proper lifecycle management of dependencies, as well as multiple message type handling. Consumers
are declared using the same interfaces as an instance, however, instead of subscribing an
already created instance of the class to the bus, the consumer type is subscribed along with a
consumer factory. As messages are received, MassTransit calls the consumer factory to get an
instance of the consumer and calls the Consume method on the instance passing the message as
the argument.

By using the consumer factory, MassTransit allows the implementation to handle the lifecycle of
consumer instances. Actual implementations vary, and can range from a simple constructor call
to create an instance to the retrieval of a consumer and any of the consumers dependencies (such as a
database session, cache reference, etc.) from an inversion of control (IoC) container. Since
the consumer factory returns a handler to MassTransit, the factory can wrap the consumer call
with any lifecycle management/synchronization code before and after the message is consumed.

Interfaces for Consumers

public class Consumes<TMessage>
{
 public interface All : IConsumer
 {
 void Consume(TMessage message);
 }

 public interface Selected : All
 {
 bool Accept(TMessage message);
 }

 public interface For<TCorrelationId> :
 All,
 CorrelatedBy<TCorrelationId>
 {

 }
}

All

Consumes<TMessage>.All

This interface defines the void Consume(TMessage message) method

Selected

Consumes<TMessage>.Selected

This interface defines an additional method allowing to process only selected
messages, by implementing the bool Accept(TMessage message) method.

For<TCorrelationId>

Consumes<TMessage>.For<TCorrelationId>

This interface defines how to do a correlated consumer.

Note

Consumers are usually sourced from an IoC container. When they are, MassTransit respects
your container’s lifecycle.

Sagas

All of the receiver types above are stateless by design, the framework makes no effort to
correlate multiple messages to a single receiver. Often it is necessary to orchestrate
multiple messages, usually of different types, into a saga (sometimes called a workflow). A
saga is a long-running transaction that is managed at the application layer (instead of, for
example, inside of a database or a distributed transaction coordinator). MassTransit allows
sagas to be declared as a regular class or as a state machine using a fluent interface.

The key difference for sagas is that the framework manages the saga instance and correlates
messages to the proper saga instance. This correlation is typically done using a CorrelationId,
which is an interface (called CorrelatedBy). Messages correlated an individual saga must be
done using a Guid. Sagas may also observe messages that are not correlated directly to
the saga instance, but this should be done carefully to avoid potentially matching a message
to hundreds of saga instances which may cause database performance issues.

public class MySaga :
 ISaga,
 InitiatedBy<MyInitialMessage>.All,
 Orchestrates<MyFollowUpMessage>.All
{
 public Guid CorrelationId { get; set; }
 public void Consume(MyInitialMessage message)
 {}
 public void Consume(MyFollowUpMessage message)
 {}
}

Messages and Serialization

MassTransit is a service bus, and a service bus is designed to move messages. At the lowest
level, a message is a chunk of JSON, XML, or even binary data. When using a statically typed
language (such as C#), a message is represented by an instance of a class (or interface) that
has relevant properties, each of which can be a value, list, dictionary, or even another nested
class.

When using MassTransit, messages are sent and received, published and subscribed, as types. The
translation (called serialization) between the textual representation of the message (which is
JSON, XML, etc.) and a type is handled using a message serializer. The default serialization
varies (for MSMQ, the framework uses XML by default, for RabbitMQ JSON is used instead). The
default serialization can be changed when a service bus is being configured.

sbc.UseJsonSerializer(); // uses JSON by default
sbc.UseXmlSerializer(); // uses XML by default
sbc.UseBsonSerializer(); // uses BSON (binary JSON) by default

Transports and Endpoints

MassTransit is a framework, and being a framework has certain rules. The first of which is known
as the Hollywood principle – “Don’t call us, we’ll call you.” Once the bus is configured and
running, the receivers are called by the framework as messages are received. There is no need
for the application to poll a message queue or repeated call a framework method in a loop.

To initiate the calls into your application code, MassTransit creates an abstraction on top of
the messaging platform (such as MSMQ or RabbitMQ).

Transports

At the lowest level, closest to the actual messaging platform used, is the transport. Transports
communicate with the actual platform API to send and receive messages. The transport implementation
is split into two parts, inbound and outbound, providing the ability to support asymmetric APIs
where sending and receiving have different behaviors and/or addresses.

Endpoints

The endpoint is the abstraction used to send messages directly and to receive messages by the
service bus. It is very uncommon (and not recommended) for an application to call Receive
on an endpoint. Endpoints are referenced by address and no distinction is made between inbound
and outbound at the endpoint level.

Address

In MassTransit, a URI is used as an address to an endpoint. The elements of the URI are used to
determine the proper transport, server, port, and queue name of the actual endpoint. For example,
an MSMQ endpoint on the local machine named “my_queue” would have the address shown below.

msmq://localhost/my_queue

A RabbitMQ queue on a remote server may be listed as below.

rabbitmq://user:password@remote_server/my_queue

Logging in MassTransit

Logging in MassTransit is done with the de facto logging tool ‘log4net.’ This tool was chosen for its many years of battle hardened code and ease of use. You can find out more about log4net and its configuration at http://logging.apache.org/log4net

Like NHibernate’s ‘NHibernate.SQL’ where all of NHibernate’s generated sql is logged, MassTransit has a log named ‘MassTransit.Messages’ where all of the message traffic is logged. This logging looks like:

RECV:{Address}:{Message Id}:{Message Type Name}
SEND:{Address}:{Message Name}

Performance Counters

Masstransit has support for updating Windows performance counters. Chris has a post introducing them - Performance Counters Added to MassTransit. http://lostechies.com/chrispatterson/2009/10/14/performance-counters-added-to-masstransit/

User Permissions

The user running your mass transit enabled application will need access to update the performance counters.

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Perflib

If Masstransit does not detect the performance counters it wishes to write to it will attempt to create them. If the user credentials do not have administrative access likely they will not have the ability to create the performance counters and errors will be logged.

Windows Installer

When deploying your mass transit enabled application it is possible to have Windows Installer create your performance counters for you. Below is Xml used by Wix 3.0 to define the Masstransit performance counters.

<Wix xmlns=”http://schemas.microsoft.com/wix/2006/wi” xmlns:msmq=”http://schemas.microsoft.com/wix/MsmqExtension” xmlns:util=”http://schemas.microsoft.com/wix/UtilExtension”>

…

	<Component Id=”masstransit_performance_counters” Guid=”{E68DCC22-AD78-4bfe-A1F6-29AA189FD76C}”>

	
	<util:PerformanceCategory Id=”perfCategoryMassTransit” Name=”MassTransit” Help=”MassTransit Performance Counters” MultiInstance=”yes”>

	<util:PerformanceCounter Name=”Consumer Threads” Help=”The current number of threads processing messages.” Type=”numberOfItems32”/>
<util:PerformanceCounter Name=”Receive Threads” Help=”The current number of threads receiving messages.” Type=”numberOfItems32”/>
<util:PerformanceCounter Name=”Received/s” Help=”The number of messages received per second” Type=”rateOfCountsPerSecond32”/>
<util:PerformanceCounter Name=”Published/s” Help=”The number of messages published per second” Type=”rateOfCountsPerSecond32”/>
<util:PerformanceCounter Name=”Sent/s” Help=”The number of messages sent per second” Type=”rateOfCountsPerSecond32”/>
<util:PerformanceCounter Name=”Messages Received” Help=”The total number of message received.” Type=”numberOfItems32”/>
<util:PerformanceCounter Name=”Messages Published” Help=”The total number of message published.” Type=”numberOfItems32”/>
<util:PerformanceCounter Name=”Messages Sent” Help=”The total number of message sent.” Type=”numberOfItems32”/>
<util:PerformanceCounter Name=”Average Consumer Duration” Help=”The average time a consumer spends processing a message.” Type=”averageCount64”/>
<util:PerformanceCounter Name=”Average Consumer Duration Base” Help=”The average time a consumer spends processing a message.” Type=”averageBase”/>
<util:PerformanceCounter Name=”Average Receive Duration” Help=”The average time to receive a message.” Type=”averageCount64”/>
<util:PerformanceCounter Name=”Average Receive Duration Base” Help=”The average time to receive a message.” Type=”averageBase”/>
<util:PerformanceCounter Name=”Average Publish Duration” Help=”The average time to publish a message.” Type=”averageCount64”/>
<util:PerformanceCounter Name=”Average Publish Duration Base” Help=”The average time to publish a message.” Type=”averageBase”/>

</util:PerformanceCategory>

</Component>

When messages are published, how do they get there?

What actually happens when you call bus.Publish(yourMessage)? The process
itself is pretty simple, but it does depend on your transport. The first thing
to know is that MassTransit has something called an ‘Outbound Pipeline’. Messages
enter into the outbound pipeline to be sent to the actual transport. Once they
hit the transport, the messages leave your .Net process and enter the process
of the transport infrastructure.

It should be noted that MassTransit prefers a dynamic routing approach. This
means that when you call Subscribe methonds, this information will get
routed to all of the nodes on the network immediately. There is nothing to configure
other than your choice of routing provider, which is usually tied to the transport
choice at the moment.

We do realize that some prefer a more static approach to this process, so there
is an extension to the system to allow this called static routing. You will HAVE
to manually set up all subscriptions on ALL endpoints for this to work. Its a lot
of manual monkey work in my opinion, but a scalpel you shall have.

MSMQ Runtime Services & Multicast

The message is routed through an internal construct called the Outbound Pipeline
the pipeline is a tree-like structure with one input point and many output
points. When a message comes in it goes through the pipeline logic, and then
hits an outbound transport. The outbound transport then sends the
message directly to the subscriber. It is the subscription service that
keeps all of the outbound and inbound pipelines in order.

RabbitMQ

Because RabbitMQ has a much, much better routing system, instead of trying
to redo that work for RabbitMQ, we instead configure the RabbitMQ system’s
routing primitives to achieve the same thing that we have done in MSMQ
and the Outbound/Inbound pipelines.

So a message is routed straight to the correct RabbitMQ Exchange. The internal
workings of MassTransit make sure to configure RabbitMQ exchanges and bindings
to implement the MassTransit pattern of routing. This means MT can make one call
to RMQ, and let RabbitMQ deal with it from there.

How to do Request/Response with MassTransit

This is a super simple example. I just hacked it up so that we would have
something to improve upon later. :)

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	//the messages
public class BasicRequest :
 CorrelatedBy<Guid>
{
 public Guid CorrelationId { get;set; }
 public string Text { get; set; }
}
public class BasicResponse :
 CorrelatedBy<Guid>
{
 public Guid CorrelationId { get; set; }
 public string Text { get; set; }
}

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	//the responder
public class Program
{
 public static void Main()
 {
 Bus.Initialize(sbc =>
 {
 sbc.UseMsmq();
 sbc.VerifyMsmqConfiguration();
 sbc.UseMulticastSubscriptionClient();
 sbc.ReceiveFrom("msmq://localhost/message_responder");
 sbc.Subscribe(subs=>
 {
 subs.Handler<RequestMessage>(msg=> Bus.Instance.MessageContext<RequestMessage>().Respond(new BasiceResponse{Text = "RESP"+msg.Text}));
 });
 });
 }
}

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	//the requester
public class Program
{
 public static void Main()
 {
 Bus.Initialize(sbc =>
 {
 sbc.UseMsmq();
 sbc.VerifyMsmqConfiguration();
 sbc.UseMulticastSubscriptionClient();
 sbc.ReceiveFrom("msmq://localhost/message_requestor");
 });

 Bus.Instance.PublishRequest(new RequestMessage(), x =>
 {
 x.Handle<ResponseMessage>(message => Console.WriteLine(message.Text));
 x.SetTimeout(30.Seconds());
 });
 }
}

So what is going on? The first chunk has the messages we are gonig to work with.

The second chunk shows the code to simple echo back the request message as a response.

The final chunk shows the code to publish the request and handle any responses that relate
to the original request message. Once any response is received (with the same correlation id as
the original request) the remaining handlers are unsubscribed and the request operation completes.

This style of request will block the calling thread until either a response is received by one of
the handlers, or the timeout period expires. If it expires, a RequestTimeoutException is thrown.
If a response handler throws an exception, that exception is rethrown on the thread that sent the
request (since it is blocked waiting on the response anyway).

The request can also be executed asynchronously using the Asychronous Programming Model of .NET.
By calling BeginPublishRequest (or the endpoint-based BeginSendRequest), an IAsyncResult is returned
to the caller. The IAsyncResult could then be passed to whatever framework code is handling the asynchronous
operation (such as a BeginWebMethod/EndWebMethod pair or an AsyncController).

Once the callback is invoked (or the wait handle is signaled), the EndRequest method (which is an extension
method off IEndpoint or IServiceBus) must be called to complete the request (at this point, any timeout or
response handler exceptions will be thrown).

NOTE: The asynchronous model will create a wait event if requested, but the callback style is greatly
preferred since it reduces the amount of operating system resources required.

Routing of Messages in MassTransit

How are messages routed?

RabbitMQ Routing Conventionns

As we were building in the RabbitMQ support we have tried to follow the best
practices for RabbitMQ at the time. Also since C# is a strongly typed language
we have tried to make the most of that as well. MassTransit follows a routing scheme
that is based on the type of the message. All messages published in MassTransit are
routed by the Message Type. In our case the Message Type is going to be the .Net type of
the message class.

Another goal was leveraging RabbitMQ for as much of the routing logic possible. With MSMQ
we had to manage the routing logic ourselves and that added quite a bit of code to the project
but with RabbitMQ’s advanced routing features we hoped we could excise that piece of the system.

To acheive that we devised a routing system that leaned on RabbitMQ’s concepts of bindings
and exchanges. By doing so the routing logic has been completely moved to RabbitMQ, which
has lead to us also working well with RabbitMQ’s clustering support giving us more HA scenarios
as well.

Lets see the story of the following message classes

public class PingMessage { ... }
public interface LiteCustomerData { ... }
public class FullCustomerData : LiteCustomerData { ... }

Next we will see what happens when you subscribe to any of these messages.

A note about rabbitmq. You send to exchanges in rabbitmq. you receive messages
from queues. So how the hell do messages get anywhere? That’s where
bindings come into play. You bind a queue to an exchange. That way one exchange
can service multiple queues. This abstracts the sending of the message from
the target queue. Pretty cool, eh? Ok, anyways.

MassTransit creates an exchange for each message type. So in the three messages
above you would see three exchanges. We also set up a pattern where we bind
exchanges to exchanges from the most specific to the most general. In this
example that would be:

PingMessage

FullCustomerData -> LiteCustomerData

Note

A word about Exchange to Exchange bindings. Its a rabbitmq only feature.
Exchange queue. To limit the amount of rabbitmq churn we have established a
directly bound exchange to your queue. This lets you come on and off the network with
little impact to the flow of messages. 1

If you are leveraging our interface based messaging with a message class like

public class MyMessage : IMessageAA {}

You would see two exchanges ‘MyMessage’ and ‘IMessageAA’. You will also see an
exchange to exchange binding from ‘MyMessage’ to ‘IMessageAA’ (from concrete
to the interface). If you subscribet to the concrete type you get a binding to
‘MyMessage’ if you subscribe to ‘IMessageAA’ you get a binding to ‘IMessageAA’.

NOTE: Why are we doing this?

Footnotes

	1

	http://blog.springsource.com/2011/04/01/routing-topologies-for-performance-and-scalability-with-rabbitmq/

	2

	http://codebetter.com/drusellers/2011/05/08/brain-dump-conventional-routing-in-rabbitmq/

Runtime Services

The MassTransit framework also comes with several services which can be run to provide additional functionality,
as well as examples of how to build services that either extend bus behavior or provide a general service. These
services are:

Subscription Service

Because MSMQ has anemic routing capabilities MassTransit originally shipped with a central subscription registry that
all of the busses could listen to, to learn when a new ?subscription? would come online. As of 2.0 the
MsmqMulticastSubscription manager provides similar functionality while removing the need for a single point
of failure. For users of RabbitMQ this service is not needed as the RabbitMQ approach leverages its excellent
message routing capabilities.

Timeout Service

This service provide an easy event based way to register timeouts for your sagas. These timeouts are persisted to
disk and will survive restart.

Health Service

Attempts to track all known endpoints and monitor their status for up/down. Currently is very remedial.

Defining Sagas using the Saga State Machine

Sagas are one of the more powerful features in MassTransit, allowing complex state and behavior to be
defined using a fluent syntax.

What is a saga?

A saga is a long-lived transaction managed by a coordinator. Sagas are initiated by an event, sagas orchestrates events, and sagas maintain the state of the overall transaction. They are designed to manage the complexity of a distributed transaction without locking and immediate consistency. They manage state, and track compensations that are required if a partial failure occurs.

We didn’t create it, we learned it from:

Cornell paper: http://www.cs.cornell.edu/andru/cs711/2002fa/reading/sagas.pdf

Arnon Rotem-Gal-Oz’s book chapter: http://www.rgoarchitects.com/Files/SOAPatterns/Saga.pdf

Defining a Saga

There are two ways to define a saga using MassTransit. The first approach is similar to creating a _consumer_
and uses interfaces on a class to define the messages that can initiate, orchestrate, or be observed by a saga
instance. The second approach creates a state machine from a class definition that defines the events, states,
and actions that make up the state machine.

Defining a Saga Using the State Machine Syntax

To define a saga using the state machine, a class that inherits from SagaStateMachine must be created.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	public class AuctionSaga :
 SagaStateMachine<AuctionSaga>,
 ISaga
{
 static CombineSaga()
 {
 Define(() =>
 {
 // the state machine behavior is defined here
 });
 }
 public Guid CorrelationId { get; set; }
 public IServiceBus Bus { get; set; }
}

Shown above is an empty definition of a saga state machine. This is just the start, however, as there
is much more to be done. The CorrelationId is the Guid assigned to the saga when it is created. The _IServiceBus_
property is set before any methods on the saga instance are called, allowing it to be used by the event handlers
defined in the saga.

First, we need to declare the valid states for the saga. There are two predefined states, _Initial_ and _Completed_,
both of which must be included in the saga definition. Any states required by the saga also need to be added. Some
example states are shown below.

	1
2
3
4

	public static State Initial { get; set; }
public static State Completed { get; set; }
public static State Open { get; set; }
public static State Closed { get; set; }

As you see, the states are added as public static properties of type _State_. This allows the states to be
used in code as properties, instead of relying on strings or other symbols.

Now, let’s define some events to go along with those states.

	1
2

	public static Event<CreateAuction> Create { get; set; }
public static Event<PlaceBid> Bid { get; set; }

Just like states, events are defined as public static properties on the saga class. The generic type
specified for the event is the message type associated with the event. When the saga is subscribed to the bus,
the message types for the events are subscribed.

The messages need to be linked to the saga instance in some way so the proper messages are delivered. The messages
are shown below.

	1
2
3
4
5
6
7

	public interface CreateAuction :
 CorrelatedBy<Guid>
{
 string Title { get; }
 string OwnerEmail { get; }
 decimal OpeningBid { get; }
}

When an auction is created, a CreateAuction command is sent to the endpoint where the saga is subscribed. Since the
message is correlated by Guid, the CorrelationId of the message will be used as the CorrelationId of the saga by default (this can be overridden as well).

	1
2
3
4
5
6
7

	public interface PlaceBid
{
 Guid BidId { get; }
 Guid AuctionId { get; }
 decimal MaximumBid { get; }
 string BidderEmail { get; }
}

For the bid message, we want to have a unique identifier for the bid, so we have a BidId on the message. We also
need the AuctionId so that the message can be delivered to the proper saga instance.

Now that we have defined the messages that are associated with the events defined in the saga, we need to
specify the behavior of how and when those events can be handled. To define the behavior, we need to add
code to the Define call in the static initializer of the saga class as shown.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	static AuctionSaga()
{
 Define(() =>
 {
 Initially(
 When(Create));
 During(Open,
 When(Bid));
 });
}

The linkage above is pretty simple, but it defines some important characteristics of the saga. First, based
on the definition above, we can see that the Create event is only accepted when the saga is in the _Initial_
state (which is the default for newly created saga instances). When an event is handled in the initial state,
a message for which there is not an existing saga will create a new saga instance.

A saga instance can only be created by events that appear in the Initially section.

NOTE: Initially() is an alias that is equivalent to specifying During(Initial).

The During statement defines the events that are accepted in the state specified. In this case, the Bid event
is allowed while the saga is in the Open State. Since the Bid event is not accepted in the Initial state, it
cannot be used to create a new saga and will result in an error being logged (which should move the message to
the error queue and publish a Fault<PlaceBid> message in response to the command).

The Bid event is a special case, however, since the message is not correlated by a Guid. In order to deliver
the message to the proper saga instance, we need to define the relationship between the message and the saga.
This is done using the Correlate method, as shown below.

	1
2
3
4
5
6
7
8

	static AuctionSaga()
{
 Define(() =>
 {
 Correlate(Bid)
 .By((saga,message) => saga.CorrelationId == message.AuctionId);
 });
}

By defining the correlation, the proper filter expressions are created to load the existing saga instance
for the message. It is important to realize that these translate directly into LINQ expressions that are
passed to the saga repository for loading the saga instance, so depending upon your repository implementation
you may have to tweak the syntax to get the proper result for your database provider. In most cases, a one-to-one
relationship as shown above is your best bet.

NOTE: Since the CreateAuction message is correlated by Guid, the default correlation is used.

Now we need to define some behavior to happen when the events occur. We’ve already defined the events, we
just need to link up some behavior.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	static AuctionSaga()
{
 Define(() =>
 {
 Initially(
 When(Create)
 .Then((saga,message) =>
 {
 saga.OpeningBid = message.OpeningBid;
 saga.OwnerEmail = message.OwnerEmail;
 saga.Title = message.Title;
 })
 .TransitionTo(Open));
 });
}
//
public decimal OpeningBid { get; set; }
public string OwnerEmail { get; set; }
public string Title { get; set; }

Two simple behavior steps have been defined above. The first, an anonymous method called with the saga instance
and the message, initializes some properties on the saga. The second transitions the state of the saga to Open.
Properties were also added to store the auction details that were provided in the CreateAuction message.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

	static AuctionSaga()
{
 Define(() =>
 {
 During(Open,
 When(Bid)
 .Call((saga,message) => saga.Handle(message),
 InCaseOf<UnderBidException>()
 .Publish((saga,message,ex) => new OutBid(message.BidId))));
 });
}
void Handle(PlaceBid bid)
{
 if(!CurrentBid.HasValue || bid.MaximumBid > CurrentBid)
 {
 if(HighBidder != null)
 {
 Bus.Publish(new Outbid(HighBidId));
 }
 CurrentBid = bid.MaximumBid;
 HighBidder = bid.BidderEmail;
 HighBidId = bid.BidId;
 }
 else
 {
 throw new UnderBidException();
 }
}
//
public decimal? CurrentBid { get; set; }
public string HighBidder { get; set; }
public Guid HighBidId { get; set; }

Above, the behavior for accepting a bid is defined. If the bid received is higher than the current bid,
the current bid is updated and the high bidder information is stored with the saga instance. If there was a high
bidder, a message is published indicating the a previous bidder was outbid, allowing actions to be taken such as
sending an email to the previous high bidder. If the new bid is too low, and exception is thrown which is caught by the
InCaseOf method. This specifies an exception handler for the Call method. Multiple exception handlers can be specified and they are evaluated in a chain-of-command order where the first one that matches the type (IsAssignableFrom) is invoked.

The use of the Bus property is also demonstrated in the Handle method, as it is used to publish the outbid message.

Combining Events (think Fork/Join)

In some cases, you may want to create a saga that orchestrates several child sagas or initiate multiple concurrent commands
and continue processing once all of the commands have been acknowledged. This can be done using a clever construct known as Combine(). For example, the saga below sends two requests and handles the response to each request separately. An additional Combine statement signifies that the two events have completed and triggers a third event on the saga instance.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

	static SupervisorSaga()
{
 Define(() =>
 {
 Initially(
 When(Create)
 .Then((saga,message) =>
 {
 saga.PostalCode = message.PostalCode;
 })
 .Publish((saga,message) => new RequestPostalCodeDetails(saga.PostalCode))
 .Publish((saga,message) => new RequestGeolocation(saga.PostalCode))
 .TransitionTo(Waiting));

 During(Waiting,
 When(PostalCodeDetailsReceived)
 .Then((saga,message) =>
 {
 saga.City = message.City;
 saga.State = message.State;
 }),
 When(GeolocationReceived)
 .Then((saga,message) =>
 {
 saga.Latitude = message.Latitude;
 saga.Longitude = message.Longitude;
 }));

 Combine(PostalCodeDetailsReceived, GeolocationReceived)
 .Into(ReadyToProceed, saga => saga.ReadyFlags);

 During(Waiting,
 When(ReadyToProceed)
 .Then((saga,message) =>
 {
 saga.Bus.Publish(new PostalCodeDetails(...));
 })
 .Complete());
 });
}
//
public int ReadyFlags { get; set; }
public static Event<CreatePostalCodeDetailsRequest> Create { get; set; }
public static Event<PostalCodeDetailsResponse> PostalCodeDetailsReceived { get; set; }
public static Event<GeolocationResponse> GeolocationReceived { get; set; }
public static Event ReadyToProceed { get; set; }

The combine method declares a set of events that must be triggered before the combined event is triggered. In
this case, the ReadyToProceed event is fired when the two separate result messages have both been received.
The reception and handling of those messages is done separately as each individual response is received.

This is a pretty simple example of the saga, but with this great power comes great responsibility.

(and with that, I’m too tired to continue for now and must rest)

Subscribing to the Saga

Once the saga has been defined, it is subscribed to the bus using the Saga subscription method.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	public class Program
{
 public static void Main()
 {
 Bus.Initialize(sbc =>
 {
 sbc.ReceiveFrom("loopback://localhost/my_saga_bus");
 sbc.Subscribe(subs =>
 {
 subs.Saga<AuctionSaga>(new InMemorySagaRepository<AuctionSaga>())
 .Permanent();
 });
 });
 }
}

NOTE: The example above uses an in-memory transport and saga repository, which is not durable. It is shown
for testing purposes only. There is a library for use with NHibernate provided with MassTransit, called
MassTransit.NHibernateIntegration. It uses FluentNHibernate with NHibernate currently.

When messages are sent, how do they get there?

TBD

Serialization Options

Using NHibernate terminology

Standard Services

Note

needs to be cleaned up

Installing MSMQ

run the install_msmq.bat
run the server_install_msmq.bat
You can also do this form C# code when configuring the bus.
Subscription Service

	Installation

MSMQ should be installed (see Installing MSMQ)
By default this service is set to run in-memory store
Run the create_[servicename]_queue.vbs
Go to the queues Properties>Security tab and ensure to give ?local administrators? Full Access. By default MSMQ only gives YOU access. Leave all other permissions at default.
Copy the files wherever you want them
run ?SubscriptionServiceHost.exe /install?
Health Service

	Installation

MSMQ should be installed (see Installing MSMQ)
By default this service is set to run in-memory store
Run the create_[servicename]_queue.vbs
Go to the queues Properties>Security tab and ensure to give ?local administrators? Full Access. By default MSMQ only gives YOU access. Leave all other permissions at default.
Copy the files wherever you want them
run ?SubscriptionServiceHost.exe /install?
Timeout Service

	Installation

MSMQ should be installed (see Installing MSMQ)
By default this service is set to run in-memory store
Run the create_[servicename]_queue.vbs
Go to the queues Properties>Security tab and ensure to give ?local administrators? Full Access. By default MSMQ only gives YOU access. Leave all other permissions at default.
Copy the files wherever you want them
run ?SubscriptionServiceHost.exe /install?
Health, and Subscription Services can be as one ?Runtime? services instead of distinct services

MSMQ should be installed
The service will attempt to create any missing queues
Copy the files to where you want them
Edit the MassTransit.RuntimeServices.exe.config to point to the right connection string and subscriptions queue
run ?MassTransit.RuntimeServices.exe /install?
To set these services up to run with a persistant (MSSSQL) store

A SQL Server 2008 database installed. If it is not on the local drive, please follow the setup considerations below.
Mass Transit will try to install to your local database. If you need it to install to a different one, please edit the ?SET INSTANCE=(local)? in the _install.cmd file and set that to a database instance you would like to use. Ensure you have permission to create databases on that instance.
Open the servicename.castle.xml in an editor. Find the hibernate.connection.connection_string in the facilities section of the file. Edit the server location.
If you would like to set a more secure password for the login, please update it in the SQLScriptsCreateUserAccountLoginDDL.sql and also in the hibernate connection string from the step before this.

How are subscriptions shared?

Once a subscription is created on a local bus, this information then needs to be shared between all the different bus instances in your application network.

Say you have a Timeout service. This service runs on a separate bus that is hooked to the queue msmq://localhost/timeout. Whenever your application wants to schedule a timeout, it needs to send
a ScheduleTimeout message to this queue. But in order for your application bus to know this routing path, it needs to receive this information first.

Though the routing data is the same, how this information get to all of the nodes is different depending on your transport configuration.

Permanent v.s. Temporary Subscriptions

Subscriptions are what registers the intent to consume a given message. The structure of the
subscription is Subscription(message_name, address, correlation_id). Permanent subscriptions
represent a subscription that you want to have stay around even if your process is shut down
(maybe you are doing an upgrade and don’t want to miss a message). A temporary subscription
is to be used in the case where you won’t care if you miss a message while shut down.

Unsubscribe Token

Any time you call subscribe off of IServiceBus you will get a token back that can be called
to unsubscribe the subscription.

var subscriptionToken = bus.Subscribe<MyMessage>();

//later, when you want to unsubscribe
if(!subscriptionToken())
{
 //handle failure condition
}

Note

If you are using a permanent subscription and don’t want unsubscribe don’t call the delegate.

If you do call the token it will be re-subscribed on start up.

Transport Specific Notes

As said earlier, different transport mechanisms use different subscription distributions. Please take a look below how your transport layer handles this and to see the differences.
If your transport layer does not handle this specifically, you can rely on the SubscriptionService

MSMQ Multicast

Warning

	limited by default to one subnet

	subscriptions do not survive service restarts (no perm subscriptions)

	sensitive to the order in which services are brought online

Each bus instance communicates with every other instance on the network through a reliable
multicast network protocol.

var bus = ServiceBusFactory.New(sbc =>
{
 //other settings

 sbc.UseMsmq();
 sbc.UseMulticastSubscriptionClient(); //turns on multicast
 sbc.SetNetwork("YOUR_KEY"); //must be set to cross machines
});

MSMQ Runtime Services

Each bus instance communicates with every other instance through an intermediary known as
the Runtime Services (specifically the Subscription Service).

Note

supports permanent subscriptions

var bus = ServiceBusFactory.New(sbc =>
{
 //other settings

 sbc.UseMsmq();
 sbc.UseSubscriptionService("msmq://localhost/my_queue");
});

RabbitMQ

Each bus instance communicates with a local rabbitmq server. Setting up the necessary
bindings and queues based on MassTransit conventions. RabbitMQ then syncs all binding
information to all nodes in the cluster.

Note

supports permanent subscriptions

var bus = ServiceBusFactory.New(sbc =>
{
 // this is the recommended routing strategy, and will call 'sbc.UseRabbitMq()'.
 sbc.UseRabbitMqRouting();

 // more config
});

Subscription Service

If your transport layer does not provide a transport specific way of sharing subscription information you can use the SubscriptionService. In this case subscription coordination depends on a central manager.
This manager is an instance of a SubscriptionService that runs somewhere in your network. Each bus instance then uses a SubscriptionClient to communicate with this central management and exchanges subscription information.

By default MassTransit bundles with the MSMQ Runtime Services. This is an MSMQ implementation of the SubscriptionService that you can run seperatly from your project.
If you do not use the MSMQ as a transport layer you can easily host it yourself.

Hosting a subscription service

The example below creates two ‘application domain’ bus instances and a subscription service. The service bus is responsible for transporting timeout messages, the second is your own awesome application.

 //
 // setup the subscription service
 //
 var subscriptionBus = ServiceBusFactory.New(sbc =>
 {
 sbc.UseStomp();
 sbc.SetConcurrentConsumerLimit(1);

 sbc.ReceiveFrom("stomp://localhost/mt_subscriptions");
 });

var subscriptionSagas = new InMemorySagaRepository<SubscriptionSaga>();
var subscriptionClientSagas = new InMemorySagaRepository<SubscriptionClientSaga>();
var subscriptionService = new SubscriptionService(subscriptionBus, subscriptionSagas, subscriptionClientSagas);

 subscriptionService.Start();

 //
 // setup the time out service
 //
 var timeoutBus = ServiceBusFactory.New(sbc =>
 {
 sbc.UseStomp();
 sbc.UseControlBus();

 sbc.ReceiveFrom("stomp://localhost/mt_timeouts");
 sbc.UseSubscriptionService("stomp://localhost/mt_subscriptions");
 });

 var timeoutService = new TimeoutService(timeoutBus, new InMemorySagaRepository<TimeoutSaga>());
timeoutService.Start();

 //
 // setup your awesome application bus
 //
var bus = ServiceBusFactory.New(sbc =>
{
 sbc.UseStomp();
 sbc.UseControlBus();

 sbc.ReceiveFrom("stomp://localhost/your_awesome_application");
 sbc.UseSubscriptionService("stomp://localhost/mt_subscriptions");
 });

Subscription Client

By stating sbc.UseSubscriptionService("stomp://localhost/mt_subscriptions"); you implicitly attach a SubscriptionClient to your service bus.

One of the first thing this client does, is send a AddSubscriptionClient to the SubscriptionService queue. After that it starts observing subscription
modifications and subsequently sends either an AddSubscription or RemoveSubscription messsage. This way updates are propagated to other nodes in your application network.

The client also handles the SubscriptionRefresh messages it receives from the SubscriptionService. These refresh messages contain the subscription information of other nodes.

Companies Using MassTransit

Company Name

How are you using it.
Transport Choice
Other Comments

Federal Home Loan Bank of Topeka

Using MassTransit to support the internal integration of bank processes.

Using: MSMQ

What does MassTransit add on top of MSMQ and RabbitMQ?

MassTransit is a service bus implementing the data bus pattern in a distributed setting. It aims to be a .Net-friendly abstraction over the messaging technologies MSMQ and RabbitMQ. As such it brings a lot of the application-specific logic closer to the programmer in an easy-to-configure manner.

Below follows a few of the benefits of having MassTransit as opposed to having raw access to the transport and building everything directly on top of the transport.

Sagas

Sagas is a coordination mechanism in distributed systems that helps with checkpointing. Often Sagas listen for events or messages and reacts on them by sending further messages; what the outgoing messages are may depend on contextual information and questions; such as ‘How long ago was this orchestration started?’

Threaded Consumers

Multiple concurrent receives possible.

Exception Management

If your connection to the message broker or queue server goes down, MassTransit takes care of trying to reconnect and deal with those failures, so that you don’t have to.

Retries & Poision Messages

MassTransit implement some level of generic exception handling for your consumers: upon complete failure from your application to deal with a message, it’s moved to an error queue which allows you to inspect the message and requeue it.

If exceptions are thrown from consumers, MassTransit by default performs a number of retries by requeueing the message, before moving it to the error queue.

Transactions

Currently only supported on MSMQ, transactions allow you to join a dequeue operation with a database operation inside of a transaction and have them execute with ACID properties.

Serialization

How do you format a message over the wire? How to handle DateTime (Unspecified, Local, Utc)? How to handle decimal numbers? MassTransit has already thought about it an implemented sensible defaults. MassTransit provides a number of serializers, including BSON, JSON, XML and Binary.

Headers

Manufacturing a header and using a common envelope format can be a nitty-gritty afair until things stabilize. MassTransit has a documented format that has been tested with billions of messages. Furthermore, the envelope in use allows buses on other nodes to reply using the source address and perform other messaging patterns more easily.

Consumer Lifecycle

MassTransit handles the creation and disposal of your consumers and doesn’t unsubscribe from a queue/exchange until all consumers, consuming specifically the messages that cause the exchange/queue binding, have been unsubscribed.

Also MassTransit handles durable and transient subscriptions and their semantics.

Routing

MassTransit implements a subscription service over dumb transports such as MSMQ and intelligent exchange-queue bindings for smart transports like RabbitMQ. This service communicates in a prioritized band called the Control Bus.

Rx integration

Interested in using Reactive Extensions to consume? MassTransit gives you this.

Unit Testability

The loopback transport is an in-memory transport that allow you a certain freedom in your integration tests (end-to-end in a local service).

Furthermore, the TestFactory allows you to easily set up both loopback and real transport-based unit tests for your consumers.

The code-base of MassTransit at https://github.com/MassTransit/MassTransit contains a large number of well written tests that service both as verification of functionality and examples for your own unit tests.

Fluent NHibernate Integration

Easily map and register your Sagas with Fluent NHibernate and let MassTransit handle the transaction boundary of your Saga, while giving your application easy access to the data in the saga.

In this case you further have the option of unit testing your sagas using Fluent NHibernate using an in-memory SQLite database, which will make your tests run smooth like a mountain river.

Routing & Static Routing

The routing engine is state-of-the-art, using the Rete Algorithm:http://en.wikipedia.org/wiki/Rete_algorithm with Stact - the .Net actor framework.

If you want to route differently than the default per-type routing, MassTransit will allow you to do this easily.

Hackable

If you feel like extending MassTransit with a Transport, Serializer or Service; the interfaces have small surface areas and we’re here to help you (both on github and in MassTransit-discuss).

Diagnostics

Using BusDriver, you can diagnose and inspect any bus on the network by communicating with it over the control bus.

Tracing

Using the tracing functionality you can get very detailed timings of when and where things were consumed, how long the receive took, how long the consume took and what exceptions were thrown if any.

Monitoring

Using the System.Diagnostics namespace and Performance Counters, you can let your operations team know how your applications are doing; message rates and health status.

Distributor

Using the distributor you can create load-based routing, thereby maximizing the use of your computers.

Timeout Service

You can schedule persistent callbacks/timeouts in your sagas that allow your application to wake up after e.g. a scheduled SLA limit.

Encryption

Using the PreSharedKeyEncryptedMessageSerializer you get pre-shared key Rijndael encryption.

Versioning Messages

Interfaces are the best way to handle versioning of messages. Your event producer publishes the
class that implements one or more interfaces, and your consumers subscribe to the interfaces.
MassTransit will make sure everyone gets a message with the right interface for the single publish.

	1
2
3
4
5

	public class CustomerMessage :
 IBasicCustomerMessage, IEnhancedCustomerMessage
{
 //implement interfaces
}

Note that you can’t do dynamic casting of the message once it’s consumer (such as message as
ISomeOtherInterface) because when you subscribe to an interface using the Xml/Json/Bson serializers,
you get a proxy back instead of your actual class that was published.

Videos

There are several videos of presentations featuring MassTransit.

Event Driven Architecture
Presented at the North Dallas .NET User Group in February, 2010 by Chris Patterson.

http://www.drowningintechnicaldebt.com/ShawnWeisfeld/archive/2010/02/04/event-driven-architecture-by-chris-patterson-north-dallas-.net.aspx

Others I?m sure, I just need to find them and link them here.

Troubleshooting MassTransit

Issues and possible solutions

	Messages are not being received by bus instances

Possible solutions

1) Assuming bus instances are configured to use MSMQ transport and are using multicast.
Machines with multiple NICs (either hardware or virtual devices) need to have MSMQ binding configured in the following way :

At the registry key [HKEY_LOCAL_MACHINESOFTWAREMicrosoftMSMQParameters]

	Add new string value with name “BindInterfaceIP”. As a value enter machine’s IP address

	Add new string value with name “MulticastBindIP”. As a value enter machine’s IP address

	Restart MSMQ service

At the end the registry entries should look like this :

[image: ../_images/MSMQMulticasting.jpg]
References

	http://support.microsoft.com/kb/974813

	http://technet.microsoft.com/en-us/library/cc756156(v=ws.10).aspx

Confirmed to work in Windows Vista SP2 and Windows Server 2008 R2 environments

 _static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Automatonymous

 		
 Installing Automatonymous

 		
 Requirements

 		
 How to install

 		
 Getting Started with Automatonymous

 		
 Creating Your First State Machine

 		
 Automatonymous Quick Start

 		
 Automatonymous Quick Start

 		
 Seriously?

 		
 Tracking State

 		
 Defining Behavior

 		
 Creating Instances

 		
 Creating the State Machine

 		
 Raising Events

 		
 Lifters

_images/inboundPipeline.png
— possly st
dapatch
- i
camplte
[oowns] oy commic

_static/ajax-loader.gif

_images/MSMQMulticasting.jpg
NapServer
NET Framenork Setup.
Netsh

Network
NetworkaccessProtection
Non-Driver Sgning
Notepad

ooec

oomazz

Offce

Ok

Outlook Bxpress
PeHeaith

PLa

PlayReady

Powershel

Prnt

Relabity Analysis

e sz L a
S TSR
REG_SZ 6.0.6001
REG_DWORD 0x00000000 (0)
REG_DWORD 0x00000002 (2)
REG_BINARY 010007 80 30 00 00 00 3¢ 00 00 00 00 00 00 00 140...
REG_DWORD 0x0000054d (1357)
REG_DWORD 0x00000001 (1)
REG_DWORD 0x000fec00 (1043456)
REG_DWORD 0xD0000000 (0)
REG EXPAND 57
2 MulticastBindIP REG_SZ
Pt DD
2 seqlD REG_DWORD Ox4f4e5b68 (1330535272)
#setupStatus. REG_DWORD 000000000 (0)
3b|Store JoumalPath REG_EXPAND_SZ :\Windows\System32\msmq\storage
abiStoreLogPath REG_EXPAND_SZ :Windows\System32\msmq\storage
a5 StorePersistentPath REG_EXPAND SZ " \Windows\System32ynsma\storage.
3b|StoreReliablePath REG_EXPAND_SZ C:\Windows\System32\msmg storage
¥ StoreXactiogPath REG_EXPAND_SZ C:\Windows \System32\msmq storage
Sirascsariode Recse oot
2 workgroup. REG_DWORD 0xD0000001 (1)

